If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15k^2-15k=200
We move all terms to the left:
15k^2-15k-(200)=0
a = 15; b = -15; c = -200;
Δ = b2-4ac
Δ = -152-4·15·(-200)
Δ = 12225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12225}=\sqrt{25*489}=\sqrt{25}*\sqrt{489}=5\sqrt{489}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-5\sqrt{489}}{2*15}=\frac{15-5\sqrt{489}}{30} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+5\sqrt{489}}{2*15}=\frac{15+5\sqrt{489}}{30} $
| 5/2•x=55 | | 6x+1=3+7 | | 14x+15×-8+1=-2x+1-8 | | 9(x+3)−35=40−3x | | 15k^2+15k=200 | | 2(w-7)=5w-17 | | 2x+x^2=130 | | X(2x+3)(x-3)=0 | | 4x+9=-19x= | | 2(x-1=-6 | | (9/7+8x)=6 | | 4x+2(x-2)=20 | | 5w+3=-2 | | 75+15w=195 | | 4(x+10=50+2x | | 378=21v | | 728=4(x+19) | | x/5=104/40 | | 2c+6/7=6 | | 5x+4=4-6x | | 4y+5=9y-27 | | 1080=6(x+15) | | 1/2(5x+52)=25x | | x/4+15=27 | | 15k^2+15k-200=0 | | 45+5=9y-27 | | 2(3x-4)^2-16=32 | | 2(3x-4)2-16=32 | | 7x-4x+13=2x+8 | | 7=a5−9 | | 11y+37=81 | | 4x-10+5=×-11 |